GNPGraystar

TECHNICAL DATA SHEET
Beta Silicon Carbide (β-SiC)

Typical Chemistry

Silicon Carbide (SiC)		97-99.99\%
Free Carbon (C)		0-0.30\%
Silicon Dioxide (SiO_{2})		0-1.20\%
Free Silicon (Si)		0-0.20\%
Iron $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$		0-0.30\%
Aluminum Oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$		< 0.03%
Magnesium Oxide (MgO)		< 0.03%
Calcium Oxide (CaO)		< 0.03%
* Can be processed according to customer requirements		
Physical Characteristics		
Crystal Form:	Cubic (Beta SiC)	
True Density:	$3.21 \mathrm{~g} / \mathrm{cm}^{3}$	
Melting Point:	Dissociates at Approx. $2500^{\circ} \mathrm{C}$	
Hardness:	Mohs: 9.5-9.75	

Available Sizes (Microns) - via Malvern

Size	D10	D50	D90	D100	Tap Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
W0.5	0.3 ± 0.1	0.6 ± 0.1	1.4 ± 0.3	≤ 3	0.9 ± 0.05
W1	0.4 ± 0.2	1 ± 0.25	2.5 ± 0.2	≤ 5	0.87 ± 0.05
W1.5	0.6 ± 0.2	1.5 ± 0.2	2.6 ± 0.4	≤ 5	0.88 ± 0.05
W2.5	1.35 ± 0.3	2.5 ± 0.2	3.82 ± 0.5	≤ 6	1.30 ± 0.05
W3.5	1.94 ± 0.3	3.5 ± 0.2	5.8 ± 0.5	≤ 7.64	1.44 ± 0.05
W5	2.8 ± 0.4	4.5 ± 0.4	7.15 ± 0.45	≤ 11.2	1.63 ± 0.05
W7	4.1 ± 0.15	6.5 ± 0.3	10.3 ± 0.8	≤ 15	1.64 ± 0.05
W10	6.6 ± 0.5	9.7 ± 0.8	15.0 ± 3.0	≤ 21.2	1.70 ± 0.05
W14	8.35 ± 0.35	12.7 ± 1.2	18.9 ± 2.6	≤ 24.1	1.72 ± 0.05
W20	11.7 ± 0.7	18.4 ± 1.6	28.5 ± 3.1	≤ 40.1	1.75 ± 0.05
W28	16.0 ± 0.7	23.5 ± 1.0	34.5 ± 2.7	≤ 51.8	1.80 ± 0.05
W40	23.4 ± 0.3	35.8 ± 1.6	54.4 ± 3.9	≤ 76.0	1.85 ± 0.05

Northern Office

37 John Glenn Dr. Amherst, NY 14228 716.759.6600

Description:

GNPGraystar's Beta Silicon Carbide is a synthetic SiC with a cubic structure, like diamond, which gives it superior physical and chemical properties. Its Mohs hardness is second only to diamond's 10 on the Mohs scale.

In addition to high hardness, β-SiC has good chemical stability, high thermal conductivity, low thermal expansion, wide band gap, high electro drift velocity, high electronic mobility, and special resistance temperature characteristics.

Therefore, it has superior abrasion resistance, high temperature resistance, thermal shock resistance, radiation resistance, and semiconductive properties

Applications:

GNPGraystar's β-SiC is used in applications such as electronics, information technology, precision machining, military and aerospace, high-grade refractories, special ceramic materials, high-grade grinding materials, and reinforcing materials.

info@GNPGraystar.com

Rev. 04/2021

Southern Office

9 Simmonsville Rd. Bluffton, SC 29910
843.815.5600

